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ABSTRACT 

 

We conduct Monte Carlo experiments to evaluate the performance of different Difference-in-

Differences estimators under treatment assignment mechanisms affected by shocks suffered by treated 

units and also in contexts where the treatment effect spills over to units in the control group. In particular, 

we compare the estimators proposed by Callaway and Sant'Anna (2021), Borusyak et al. (2021), and 

Sun and Abraham (2021), as well as the two-way fixed effects (TWFE) estimator. The results 

demonstrate that the treatment assignment mechanisms we design, and the presence of spillover effects 

can severely compromise the performance of the considered estimators, leading to bias and, even more 

importantly, inconsistency. Therefore, cautious for interpreting the results should be taken in 

applications where the environment studied resembles those we consider. The development of more 

robust estimators is a necessity and a prosperous research venue. 

 

Keywords: Difference-in-Differences; Causal Inference; Treatment assignment mechanisms; Spillover 

effects. 

 

 

 

RESUMO  

 

Neste trabalho são realizados experimentos de Monte Carlo para avaliar o desempenho de diferentes 

estimadores da Diferença-em-Diferenças i) quando mecanismos de atribuição do tratamento são 

afetados por choques sofridos pelas unidades tratadas e ii) em contextos em que o efeito do tratamento 

transborda para as unidades do grupo de controle. Em particular, são comparados os estimadores 

propostos por Callaway e Sant'Anna (2021), Borusyak et al. (2021) e Sun e Abraham (2021), bem como 

o estimador de efeitos fixos two-way (TWFE). Os resultados demonstram que os mecanismos de 

atribuição do tratamento avaliados e a presença de efeito transbordamento podem comprometer 

severamente o desempenho dos estimadores avaliados, gerando viés e inconsistência. Assim, deve-se 

ter cautela ao interpretar os resultados de aplicações nas quais o ambiente estudado se assemelha aos 

considerados neste trabalho. O desenvolvimento de estimadores mais robustos é uma necessidade e um 

campo de pesquisa promissor. 

 

Palavras-chave: Diferença-em-Diferenças; Inferência Causal; Mecanismos de seleção ao tratamento; 

Efeito transbordamento 
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1. INTRODUCTION 

 

Estimating the causal effect of a policy or intervention is both a major theme in Applied 

Economics and one of the greatest methodological challenges in Econometrics. In recent decades, in 

parallel with an increase in the amount of data available to researchers, there has been a significant 

increase in the quantity and quality of methods capable of estimating causal relationships. Angrist and 

Pischke (2010) called this phenomenon "The Credibility Revolution" within the field of Econometrics. 

The Difference-in-Differences estimator is one of the main methods used to estimate causal 

effects with panel data. In the canonical version of the model, the researcher has data on two groups of 

units in two distinct periods in time. Between the first and second periods, one of the groups (the 

treatment group) is exposed to some intervention, while the other group (the control group) does not 

undergo any change during this time window. Under some assumptions, the Difference-in-Differences 

estimator provides a consistent way to construct a counterfactual scenario for the treated units. With 

this, one is able to estimate the average treatment effect among treated units (ATT), which is the 

parameter of interest in several empirical studies. 

However, by construction, this canonical model is not able to handle more complex data 

structures that often appear in practical applications. For instance, in several applications there are data 

for more than two periods, more than two groups of units, and there is still the possibility that the groups 

are treated at different periods. These circumstances generate additional challenges for estimation, since 

the assumptions under the canonical model and the estimation methods are particular to the context in 

which there are only two groups observed in only two periods.  

As discussed by Roth et al. (2022) and de Chaisemartin and D'Haultfoeuille (2022), the 

traditional alternative that has emerged to deal with this more complex data structure consists of 

regressing the variable of interest against time and unit fixed effects, plus a binary variable indicating 

the treatment status. This strategy is known in the literature as two-way fixed effects regression (TWFE). 

In recent years, however, several theoretical papers have emerged pointing to serious problems 

with the TWFE estimator, such as the fact that it may not estimate a convex combination of the average 

treatment effects among the treated subgroups of the sample, with the assigned weights possibly being 

negative (DE CHAISEMARTIN; D'HAULTFOEUILLE, 2020; SUN; ABRAHAM, 2021; 

GOODMAN-BACON, 2021). These articles conclude that this type of problem arises in contexts where 

there is heterogeneity in the treatment effect over time or between groups of treated units. As an 

alternative, more robust estimators have been developed to incorporate heterogeneity in treatment 

effects (DE CHAISEMARTIN; D'HAULTFOEUILLE, 2020; SUN; ABRAHAM, 2021; CALLAWAY; 

SANT'ANNA, 2021; BORUSYAK et al., 2021; ATHEY; IMBENS, 2022; GARDNER, 2022). 
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However, there are many questions about these new estimators that have not yet been addressed 

in depth. In this paper we investigate two of them. First, it is not well known how these estimators are 

affected by different treatment assignment mechanisms, in particular by mechanisms that are a function 

of the shocks suffered by the units. An illustrative situation would be labor training programs in which 

a negative shock to income is the determinant for a worker to be able to receive the treatment. Another 

situation in which the properties of these estimators are not known occurs when the treatment effect on 

the treated units spill over to units that remain in the control group. In fact, most causal inference 

estimators adopt the assumption known as SUTVA (Stable Unit Treatment Value Assumption), which 

rules out any version of spillover effect. However, such effects are present in a significant number of 

empirical applications in Economics. For example, it is reasonable to think that a credit policy directed 

to a specific municipality affects other municipalities around it. 

The aim of the paper is to verify the properties of the estimators developed by Callaway and 

Sant'Anna (2021), Sun and Abraham (2021) and Borusyak et al. (2021) under the two circumstances 

mentioned in the previous paragraph. Our strategy consists of conducting two separate Monte Carlo 

experiments based on artificially generated datasets containing the treatment assignment mechanisms 

we intend to study. The properties of the estimators are compared after estimating them over each dataset 

that is generated. 

The remainder of the paper is organized as follows. In the next section we present a brief 

literature review. In section 3 we discuss details regarding the simulations whose results are presented 

in section 4. Finally, section 5 concludes. 

 

2. LITERATURE REVIEW 

 

This section briefly reviews the Difference-in-Differences literature, focusing on the topics most 

related to the objective of this paper. Subsection 2.1 discusses the canonical Difference-in-Differences 

model, developed for the case in which there are two groups in the sample, observed in two periods, and 

one of the groups suffers some intervention whose effect is to be estimated. Subsection 2.2 discusses 

the two-way fixed effects regression (TWFE). Finally, subsection 2.3 summarizes the main results 

obtained by the most recent Difference-in-Differences literature on the problems to which the TWFE 

model is subject when the hypothesis of homogeneity of the treatment effect is absent. 

 

2.1. The canonical Difference-in-Differences model 

 

The canonical Difference-in-Differences model design consists of a set of units (indexed by 𝑖 =

1, 2, … , 𝑁) and two periods (𝑡 = 1, 2).  The researcher wants to estimate the causal effect of some 

intervention between the two periods on an observed variable 𝑌. We assign  𝐷𝑖 = 1 for units treated 
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between 𝑡 = 1 and 𝑡 = 2, and  𝐷𝑖 = 0 for those in the control group. The researcher observes a panel 

with the variable of interest 𝑌𝑖𝑡 and with the binary variable indicating the treatment status 𝐷𝑖 for all 

units in both periods.  

Let 𝑌𝑖𝑡(0) be unit 𝑖’s potential outcome in period 𝑡 if it remains in the control group and 𝑌𝑖𝑡(1) 

if it is treated between the two time points. Due to the "fundamental problem of causal inference" 

described by Holland (1986), only one potential outcome per unit is observed. A more concise way of 

saying this is to write the realization of the variable 𝑌 for each unit at each period as 

 

𝑌𝑖𝑡 = 𝐷𝑖𝑌𝑖𝑡(1) + (1 − 𝐷𝑖)𝑌𝑖𝑡(0) 

 

In this case, the parameter to be estimated is the average treatment effect on the treated (ATT) 

in period 2, that is, 

𝜏2 = 𝔼[𝑌𝑖2(1) − 𝑌𝑖2(0) | 𝐷𝑖 = 1] 

 

For the identification of this parameter, two main assumptions are made. The first is the absence 

of anticipation to the treatment, which basically means that the intervention has no impact on units that 

will eventually be treated before it is actually implemented. This is the same as writing 𝑌𝑖1(1) =  𝑌𝑖1(0) 

for every unit 𝑖 in the treatment group. 

The second assumption is that of parallel trends, which requires that 

 

𝔼[𝑌𝑖2(0) − 𝑌𝑖1(0) | 𝐷𝑖 = 1] =  𝔼[𝑌𝑖2(0) − 𝑌𝑖1(0) | 𝐷𝑖 = 0] 

 

This condition says that the evolution of the variable of interest between the two groups (control 

and treatment) should be the same in the absence of intervention. The parallel trends assumption is not 

directly testable, since 𝑌𝑖2(0) is not observed for units with 𝐷𝑖 = 1. 

With these two assumptions it is possible to estimate 𝜏2, since 

 

𝜏2 =  𝔼[𝑌𝑖2(1) − 𝑌𝑖2(0) | 𝐷𝑖 = 1] =  𝔼[𝑌𝑖2(1) − 𝑌𝑖1(1) +  𝑌𝑖1(1)  − 𝑌𝑖2(0) | 𝐷𝑖 = 1] = 

= 𝔼[𝑌𝑖2(1) − 𝑌𝑖1(0) | 𝐷𝑖 = 1] −  𝔼[𝑌𝑖2(0) − 𝑌𝑖1(1) | 𝐷𝑖 = 1] =  

= 𝔼[𝑌𝑖2(1) − 𝑌𝑖1(0) | 𝐷𝑖 = 1] −  𝔼[𝑌𝑖2(0) − 𝑌𝑖1(0) | 𝐷𝑖 = 1] =  

= 𝔼[𝑌𝑖2(1) − 𝑌𝑖1(0) | 𝐷𝑖 = 1] −  𝔼[𝑌𝑖2(0) − 𝑌𝑖1(0) | 𝐷𝑖 = 0] =  

= 𝔼[𝑌𝑖2 − 𝑌𝑖1 | 𝐷𝑖 = 1] −  𝔼[𝑌𝑖2 − 𝑌𝑖1 | 𝐷𝑖 = 0] 

 

and the latter two terms are easily estimated using their sample analog: 

 

𝜏̂2 = (𝑌̅𝑡=2,𝐷=1 −  𝑌̅𝑡=1,𝐷=1) − (𝑌̅𝑡=2,𝐷=0 −  𝑌̅𝑡=1,𝐷=0) 

 

In practice, however, it is often more convenient to estimate 𝜏2 by regression to facilitate 

inference. In this case, the estimator is the 𝛽 coefficient of the following regression: 



9 

 

 

𝑌𝑖𝑡 =  𝛼 + 𝐷𝑖 𝛾 + 𝟏{𝑡 = 2}𝜆 + (𝐷𝑖  × 𝟏{𝑡 = 2})𝛽 +  𝜖𝑖𝑡 

 

If 𝐷𝑖 is orthogonal to 𝜖𝑖𝑡, it is possible to show that this estimator of 𝜏2 is unbiased 

(WOOLDRIDGE, 2010). With a few more technical conditions, the OLS estimator of 𝛽 is consistent 

and asymptotically normally distributed. Roth et al. (2022) discuss in more detail the inference 

procedure for this context. 

 

2.2 The TWFE model 

 

In several cases of interest, the dataset available to the researcher contains more than two periods 

and the units in the sample are treated in multiple distinct periods. In such contexts, using the panel data 

structure to estimate the causal effect of treatment is considerably more complicated than in the 

canonical Difference-in-Differences model. 

The first step required to analyze the more general context is to modify the model framework 

and the required assumptions. Roth et al. (2022) describe the most common framework in the literature, 

which we reproduce here. There are 𝑇 periods (indexed by 𝑡 = 1, 2, … , 𝑇) and treatment is considered 

an absorbing state, i.e., units treated at some point in the sample do not revert to the control group later. 

This type of treatment is known in the literature as staggered. As in the canonical case, we consider a 

variable 𝐷𝑖𝑡 to indicate whether unit 𝑖 is in the treatment group at time 𝑡, and a variable 𝐺𝑖 to denote the 

first period unit 𝑖 enters the treatment group. If unit 𝑖 remains in the control group throughout the sample, 

we consider 𝐺𝑖 = ∞ with some abuse of notation. The fact that the treatment is staggered implies that 

the sequence of potential outcomes for each unit can be completely identified by the first period in which 

the treatment is implemented for it. Thus, for a given unit 𝑖, if 𝐺𝑖 = 𝑔, its potential outcome at 𝑡 is 

denoted by 𝑌𝑖𝑡(𝑔). Similarly, assuming 𝐺𝑖 = ∞, the potential outcome is 𝑌𝑖𝑡(∞). 

The realizations of variable 𝑌 are related to the potential outcomes by means of the following 

equality: 

𝑌𝑖𝑡 = 𝑌𝑖𝑡(∞) +  ∑(𝑌𝑖𝑡(𝑔) −  𝑌𝑖𝑡(∞))𝟏{𝐺𝑖 = 𝑔}

𝑇

𝑔=2

 

The natural extension (which is not the only one in the literature) of the parallel trends 

assumption to this general setup is to assume that for any 𝑡 ≠ 𝑡′ and 𝑔 ≠ 𝑔′, it holds that 

 

𝔼[𝑌𝑖𝑡(∞) − 𝑌𝑖𝑡′(∞) | 𝐺𝑖 = 𝑔] =  𝔼[𝑌𝑖𝑡(∞) − 𝑌𝑖𝑡′(∞) | 𝐺𝑖 = 𝑔′] 

 

Similarly, a natural extension of the no anticipation assumption is to assume that 𝑌𝑖𝑡(𝑔) =

 𝑌𝑖𝑡(∞) for any 𝑖, 𝑔 and 𝑡 < 𝑔. 
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Traditionally, as discussed by Roth et al. (2022), the TWFE regression is the main method used 

to estimate the causal effect of a treatment on the treated units in these cases, which consists of a natural 

extension of the regression used in the canonical case: the variable of interest is regressed against unit 

and time fixed effects and against a set of binary variables related to the treatment status for each unit 

at a given time. de Chaisemartin and D'Haultfoeuille (2020), from a survey of all applied papers 

published in the American Economic Review between 2010 and 2012, conclude that in about 20% of 

them a TWFE regression was used to estimate the effect of some treatment on a variable. Along the 

same line, de Chaisemartin and D'Haultfoeuille (2022) show that 26 of the 100 most cited articles in the 

American Economic Review between 2015 and 2019 estimate some TWFE-type regression. These two 

surveys highlight the popularity of TWFE regression for estimating causal effects in applied projects. 

Sun and Abraham (2021) divide TWFE regression into two cases. The first is the so-called static 

TWFE and has the following specification: 

 

𝑌𝑖𝑡 =  𝛼𝑖 + 𝜆𝑡 +  𝜇 𝐷𝑖𝑡 +  𝜖𝑖𝑡 

 

where 𝛼𝑖 is a unit fixed effect, 𝜆𝑡 is a time fixed effect and 𝐷𝑖𝑡 indicates whether unit 𝑖 was being treated 

in period 𝑡 or not. In this case, 𝜇 is usually interpreted as being an estimator of the causal effect of the 

treatment on the treated. 

The dynamic specification of TWFE is broader than the static one. To fix the notation, let 𝐸𝑖 be 

the instant at which unit 𝑖 enters the treatment group and 𝐾 and 𝐺 be positive integers chosen by the 

researcher. In this case, one estimates a regression with a specification similar to the following: 

 

𝑌𝑖𝑡 =  𝛼𝑖 +  𝜆𝑡 +  ∑ 𝜇𝑙  𝟏{𝑡 −  𝐸𝑖 = 𝑙} + 

−2

𝑙 =−𝐾

∑ 𝜇𝑔 𝟏{𝑡 − 𝐸𝑖 = 𝑔} + 𝜖𝑖𝑡

𝐺

𝑔 =0

 

 

The coefficients 𝜇𝑙 are then used to test the parallel trends assumption, while 𝜇𝑔 is used  to 

analyze the dynamic evolution of the average treatment effect across treated units. 

 

2.3 The most recent Difference-in-Differences literature 

 

For a long time, it was assumed, without an adequate theoretical basis, that the TWFE estimator 

worked in a similar way to the canonical Difference-in-Differences estimator. More recently however, 

several problems raised have served to contradict this thesis. de Chaisemartin and D'Haultfoeuille (2020) 

show, for the case of static TWFE, that the coefficient associated with the variable indicating the 

treatment status, which is commonly interpreted as a measure of the causal effect of the intervention, 

can be written as a weighted average of the average treatment effect for subgroups of the sample at that 

time, but the weights can be negative. In the limit, for example, it may happen that the average effect is 
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positive for each subgroup, but the overall coefficient is negative. Sun and Abraham (2021) show, for 

the dynamic version of the TWFE estimator, that the coefficients 𝜇𝑙 and 𝜇𝑔 are contaminated by 

treatment effects associated with other periods relative to the beginning of the intervention, affecting the 

usual interpretation of these coefficients, specially the practice of using 𝜇𝑙 to test for parallel trends. 

Goodman-Bacon (2021), from another decomposition, shows that the TWFE estimator is a weighted 

average of all possible two-by-two Difference-in-Differences combinations between groups that change 

their treatment status and groups whose status remains constant. From this decomposition, the author 

explicitly shows that the TWFE estimator estimates a weighted average of coefficients related to the 

treatment effect for subgroups of the sample, but again the weights may be negative, so the combination 

of these parameters may not be convex. Negative weights are problematic in this context as they 

compromise the causal interpretation of the estimates obtained. In all these papers, the common factor 

explaining this problem was found to be heterogeneity in the treatment effect over time or between 

subgroups of treated units. As summarized by de Chaisemartin and D'Haultfoeuille (2022), the TWFE 

estimator requires an additional assumption (compared to the traditional Difference-in-Differences 

model) to estimate the average treatment effect in a non-biased way, namely that the impact of the 

intervention is constant over time and across units. 

While the derivation of these results is complicated, their intuition is not difficult to rationalize. 

The specification of TWFE regressions, both the static and the dynamic, implicitly assumes the extent 

to which the treatment is allowed to vary along 𝑖 or 𝑡. Taking the static specification as an example, the 

coefficient 𝜇, which estimates the ATT, is by assumed to be the same for all units in all periods, so it is 

intuitive to think that systematic heterogeneities in the treatment effect pose a problem for making 

inference with this specification. Roth et al. (2022) and de Chaisemartin and D'Haultfoeuille (2022) 

discuss in more depth the main results found by this most recent literature. 

As problems with the TWFE estimator have been identified, alternative estimators have been 

developed intending to increase robustness to contexts in which the treatment effect is heterogeneous 

over time or across units (DE CHAISEMARTIN; D'HAULTFOEUILLE, 2020; SUN; ABRAHAM, 

2021; CALLAWAY; SANT'ANNA, 2021; BORUSYAK et al, 2021; LIU et al., 2021; ATHEY; 

IMBENS, 2022; GARDNER, 2022). The differences between them regard the hypotheses assumed, the 

contexts in which they should be applied, and the specific parameter they seek to estimate.  The rest of 

the paper is dedicated to evaluating the performance of these new estimators when exposed to situations 

we may observe in real exercises but are not considered among the hypotheses behind their development. 

 

3. SIMULATIONS 

 

We conduct two exercises, each considering a different type of problem one may face while 

working with real data. The first focuses on evaluating how treatment assignment mechanisms based on 

the shocks suffered by the units affect the estimates of the treatment effect. The second seeks to ascertain 
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how the estimates are affected when the treatment effect on the treated units spills over to those in the 

control group. 

The estimators proposed by Sun and Abraham (2021), Callaway and Sant'Anna (2021) and 

Borusyak et al. (2021) are evaluated, in addition to the TWFE estimator. This list does not exhaust all 

the estimators recently proposed, but they have been the most adopted when it comes to estimate 

dynamic treatment effects (DE CHAISEMARTIN; D'HAULTFOEUILLE, 2022; ROTH et al., 2022), 

besides relying on similar assumptions. 

In the case of the estimator proposed by Callaway and Sant'Anna (2021), two estimates are 

made: one using as a control group the units that at a given time have not yet been treated, but eventually 

will be (the not yet treated units), and another considering the units that have not been treated at any 

time (the never treated units). The estimation method chosen was the doubly robust, which is the 

standard of the did package in R, developed by the same authors of the mentioned article.  

Six different data structures are considered, four for the first exercise and two for the second. 

For each structure, panels with 50, 250 and 500 individuals are simulated, covering 20 periods. For each 

panel the treatment effect on treated units is estimated with the five estimators considered. For each 

combination of data structure and dimension, 1000 panels are generated, allowing us to estimate the 

same number of treatment effect. Empirical distribution of the estimates are then constructed, and the 

following descriptive statistics computed: mean, median, 2.5th and 97.5th percentile, and the mean 

squared error (MSE).  

The panel size (i.e., the number of individuals multiplied by the number of periods) is denoted 

by 𝑁𝑇 in the remainder of the paper. Thus, we simulate datasets with 𝑁𝑇 equal to 1000, 5000 and 10000, 

allowing to assess the asymptotic properties of each estimator. The asymptotic analysis considers a fixed 

T = 20 but varies the number of units, following the tradition in the panel data literature. 

On the simulated datasets, the treatment effect on treated units is assumed to be homogeneous, 

both across units and across periods relative to the start of treatment. This is mainly for two reasons. 

The first is to focus on the specific problems we want to analyze. Under homogeneity of treatment effect, 

any convex combination of the treatment effect across subgroups of the sample will be equal to each 

other. In particular, any global parameter associated with the treatment effect will have the same value, 

which makes it easier to interpret and report the results. Secondly, the properties of the new DID 

estimators and the problems of TWFE regression when treatment effects are heterogeneous are already 

well documented in the literature.  

In all simulated panels, the treatment will be staggered. In addition, without any loss of 

generality regarding the results obtained, it is always assumed that the treatment effect on the treated 

units is positive, also in order to facilitate interpretations. In simulations with spillover effect, we assume 

the indirect effect to positively affect units in the control group. 

The simulations should begin with a specification for the potential outcome of the units in the 

absence of treatment (i.e., when 𝐷𝑖,𝑡 = 0). The general specification chosen has a form similar to 
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𝑌𝑖𝑡(0, 𝐷−𝑖,𝑡) = 𝑌𝑖𝑡(𝐷𝑖,𝑡 = 0, 𝐷−𝑖,𝑡) =  𝛼𝑖 + 𝜆𝑡 + 𝜙(𝐷−𝑖,𝑡) + 𝜖𝑖𝑡 

 

with 𝜖𝑖𝑡~ 𝑁(0,1). The coefficients 𝛼𝑖 and 𝜆𝑡 represent unit and time fixed effects respectively. The term 

𝐷−𝑖,𝑡 is a vector with the treatment status of all units in period 𝑡 except the i-th, and the map 𝜙(∙), which 

assigns to each 𝐷−𝑖,𝑡 a non-negative real number, represents the spillover effect. In simulations focused 

on selection mechanism, 𝜙(∙) is the null function since spillover effects are absent. It is further assumed 

that 𝜙(0) = 0, meaning that there is no spillover without treatment of any unit. 𝛼𝑖 are drawn from a 

uniform distribution over the interval [80, 120] and 𝜆𝑡 = 𝑡. These are arbitrary choices that do not affect 

the validity of the results since they do not interfere in the parallel trends assumption. This specification 

for the potential outcome is standard in the literature (except for the term associated with the spillover 

effect) and coincides with the one used by Borusyak et al. (2021) in their simulation exercises. 

Considering first the case with no spillover effect, one can formally define the treatment effect 

at period 𝑡 on unit 𝑖 (treated at 𝑡) as 

 

𝜏𝑖,𝑡 ≡ 𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 1) − 𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 0) = 𝑌𝑖,𝑡 − 𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 0) = 𝑌𝑖,𝑡 − 𝑌𝑖,𝑡(0) 

 

That is, the observed value is compared with the counterfactual scenario in which the unit had 

not been treated at 𝑡. In the presence of spillover effects, the treatment effect at time 𝑡 on unit 𝑖 (treated 

at 𝑡) is analogously represented by 

 

𝜏𝑖,𝑡 ≡ 𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 1, 𝐷−𝑖,𝑡) −  𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 0,0) 

 

Now the comparison is made between the value actually observed for the unit and what would 

have been observed in the absence of treatment in any unit (so there is no spillover).  

Although the binary variable 𝐷𝑖𝑡 is observed by the econometrician, one may think of situations 

where 𝐷𝑖𝑡 depends on other variables, such as 𝛼𝑖 or 𝜖𝑖𝑡. In the first set of simulations the relationship 

with 𝜖𝑖𝑡 is explored. As an example, one can think of measuring the impact of government labor training 

programs, which however tend to have large participation of workers who have suffered sharp and recent 

decline in their income. This situation is known in the policy evaluation and labor economics literature 

as Ashenfelter's dip, following Ashenfelter (1978). This possibility directly affects the properties of the 

DID estimators, since they depend on some extent on 𝐷𝑖𝑡 to validate the parallel trend assumption. To 

see why, suppose for simplicity that there is no spillover effect and that a simple version of the parallel 

trend assumption is considered, requiring that for any 𝑡′ e 𝑔, 𝑔′, it holds that 

 

𝔼[𝑌𝑖𝑡(0) − 𝑌𝑖𝑡′(0) | 𝐺𝑖 = 𝑔] =  𝔼[𝑌𝑖𝑡(0) − 𝑌𝑖𝑡′(0) | 𝐺𝑖 = 𝑔′] 
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where 𝐺𝑖 is a variable indicating the first period at which unit 𝑖 receives the treatment. Note that 𝐺𝑖 is 

completely determined by 𝐷𝑖𝑡, after all, the period where unit 𝑖 enters the treatment group is precisely 

the (only) period when 𝐷𝑖𝑡 has a jump-type discontinuity, i.e., 𝐺𝑖 = 𝑔 if and only if 𝐷𝑖𝑔 − 𝐷𝑖,𝑔−1 = 1.  

By the assumed specification for the potential outcome in the absence of treatment, this is equivalent to 

requiring that 

 

𝔼[𝜖𝑖𝑡 − 𝜖𝑖𝑡′  | 𝐺𝑖 = 𝑔] =  𝔼[𝜖𝑖𝑡 − 𝜖𝑖𝑡′  | 𝐺𝑖 = 𝑔′] 

 

From this expression, it is clear that the parallel trend assumption depends on 𝐷𝑖𝑡. Moreover, it 

becomes clear that the validity of this assumption depends on the relationship between 𝐷𝑖𝑡 and the 

sequence of shocks {𝜖𝑖𝑡}𝑡. So, essentially, what one is doing by exploring different treatment selection 

mechanism is stressing the parallel trends assumption. In the case of exploring spillover effects, the 

stressed hypothesis is SUTVA. 

In summary, in the simulations related to treatment assignment, different relationships between 

𝐷𝑖𝑡 and {𝜖𝑖𝑡}𝑡 are considered, while in the simulations involving spillover effects, different forms for 

the function 𝜙(∙) are explored. 

 

3.1  Treatment assignment mechanisms 

 

This subsection is dedicated to simulations involving four different treatment assignment 

mechanisms. For each of them, we simulate 1000 independent panel datasets containing the untreated 

potential outcomes of the units over time. In each of them, we consider a situation where units that suffer 

a sufficiently negative shock to their potential outcome are assigned to the treatment, which has a 

positive effect (equal to 3) on the treated units. That is, 𝜏𝑖,𝑡 = 3 is the true value of the parameter that 

we wish to estimate. When a unit is treated, the actual observed value for it, once the treatment starts, is 

given by 

𝑌𝑖,𝑡 = 𝛼𝑖 + 𝜆𝑡 + 3 + 𝜖𝑖𝑡 = 𝑌𝑖,𝑡(0) + 3 

 

The first mechanism (mechanism A) assigns unit 𝑖 to the treatment group if and only if 𝜖𝑖,𝑡 <

−1.64. As the shocks are drawn from a standard normal distribution, the value of -1.64 represents the 

5th percentile of the distribution function. 

The second mechanism (B) selects some unit 𝑖 to the treatment group at time 𝑡 if 𝜖𝑖,𝑡−4 < −1.64. 

Now the treatment assignment is not instantaneous after the negative shock suffered, so there is a delay 

between the occurrence of the shock that causes a unit to be treated and the start of the treatment. This 

mechanism may be more realistic in the real world. For example, if a city suffers a shock (in health, 

violence, economy, etc.), it takes a while for the government to identify the problem and implement 

policies to mitigate it. Another example would be that of a person who suffers a significant and 
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unexpected drop in her salary and waits a while before deciding whether to enroll in a labor qualification 

program. 

The third mechanism (C) is analogous to the second but assigns a unit to the treatment 8 periods 

(instead of 4) after suffering a negative shock of less than −1.64. The aim of this round is to allow for 

a better understanding of the effects of the time lag between the shock and the start of the treatment on 

the estimators. 

Finally, the fourth mechanism (D) assigns unit 𝑖 to treatment in period 𝑡 if and only if 𝜖𝑖,𝑡 𝛼𝑖⁄ <

−2% . Unlike previous mechanisms, now the magnitude of the shock is considered relative to the unit’s 

fixed effect, rather than its magnitude in absolute terms. In the context of labor training programs, for 

example, such a mechanism could be rationalized by interpreting that the determinant of the shock is its 

relative impact on individual's base wage, rather than the impact in absolute terms. Another example 

would be the adoption of a specific anti-robbery policy that would take into account not simply the 

absolute variation in cases recorded in different localities, but rather this variation in per capita terms. 

 

3.2  Spillover effect 

 

This subsection details the strategy to analyze the performance of the estimators in the presence 

of spillover effects. Two situations are studied (spillover I and spillover II), both of them considering 

that all units belong to some (but only one) cluster and the units in the control group derive a positive 

effect from the treatment received by the units in the same cluster. The difference between each 

experiment is related to hypothesis regarding the spillover, which we will soon detail. Cities of a 

metropolitan area and neighboring areas in a city are good examples of a cluster.  

Regardless of the spillover effect, the general design of the experiments is as follows. In each 

of the 1000 repetitions we create panels with 20 periods containing 50, 250 and 500 individuals, and 

then generate their potential outcomes over time. These units are randomly divided into clusters of 10. 

For each cluster we randomly select a period for it to be treated. This means that at least one (but not 

necessarily all) unit of the cluster enters the treatment group in that period. From the moment the cluster 

is treated until the final period 𝑇 = 20, 7 of the 10 units are randomly assigned to treatment over time. 

The potential outcome is given by 

 

𝑌𝑖,𝑡(𝐷𝑖,𝑡 , 𝐷−𝑖,𝑡) = 𝛼𝑖 + 𝜆𝑡 + 3𝐷𝑖,𝑡 + 3𝜌(1 − 𝐷𝑖,𝑡) 𝜙(𝐷−𝑖,𝑡) + 𝜖𝑖𝑡 

 

where 𝐷−𝑖,𝑡 represents the treatment status of the units in the same cluster as unit 𝑖, 𝜙 is a function that 

varies depending on the spillover effect (I or II), and 𝜌 > 0 measures the intensity of the spillover effect. 

It is easy to see that the population treatment effect on a treated unit 𝑖 in period 𝑡 is equal to 

 

𝜏𝑖,𝑡 = 𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 1, 𝐷−𝑖,𝑡) − 𝑌𝑖,𝑡(𝐷𝑖,𝑡 = 0,0) = 3 
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Under the spillover effect I, it is assumed that 𝜙(𝐷−𝑖,𝑡) =  max
𝑗≠𝑖

𝐷𝑗,𝑡 and 𝜌 = 10%. That is, once 

a cluster joins the treatment group, the units actually treated receive a benefit equal to 3, while the units 

remaining in the control group derive a benefit of 0.3. Over time, more units in the cluster derive the 

full effect of 3 as more of them receive the treatment. Under this design, we assume that the spillover 

on control units does not increase as more units in the same cluster becomes treated. As discussed in 

Butts (2021), this pattern of spillover can happen, for example, with the construction of a new library in 

some city in which there was none before. In this case, there may be a spillover effect for residents of 

surrounding towns (presumably smaller than the benefit of living in a town with a library, but still 

positive) as they also gain access to this new library. However, it should not make a difference whether 

there is one or more libraries they can go to, as long as they have access to one. One can rationalize this 

by thinking that the spillover effect to the control group is not additive in the number of units treated in 

the cluster, but binary. 

On the other hand, under spillover II it is assumed 𝜌 = 2% and 𝜙(𝐷−𝑖,𝑡) = 〈𝐷−𝑖,𝑡 , 𝐷−𝑖,𝑡〉, where 

〈∙,∙〉 is the usual inner product for Euclidean spaces. Thus, now 𝜙(𝐷−𝑖,𝑡) indicates the number of treated 

units at time 𝑡 belonging to the same cluster as unit 𝑖 and the spillover benefit increases with the number 

of treated units in the same cluster. According to Butts (2021), this spillover pattern may represent 

externalities associated economies of agglomeration. For instance, one can think of a situation where 

residents of one neighborhood hire private security that also benefit surrounding neighborhoods, and 

this positive effect becoming even larger as residents from other close surrounding area also start hiring 

private security. 

 

 

4. RESULTS 

 

This section presents the results of the simulations. For each mechanism, spillover effect, and 

each sample size, there is a table with the descriptive statistics calculated from the simulations. Density 

plots of the estimates for all simulations are presented in the Appendix. 

 

4.1  Treatment assignment mechanisms 

 

Tables 1, 2 and 3 show the results of mechanism A, which considers an immediate assignment 

to the treatment units that suffer a high negative shock in absolute terms. The best performing estimators 

by the criteria of average bias and MSE are the TWFE and the one proposed by Borusyak et al. (2021). 

Still, the results show that these models present considerable bias, overestimating on average the true 

value of the coefficient by more than 15%. Moreover, the true value of the treatment effect (3) is outside 

the estimated confidence interval for all sample sizes and all five estimators.  
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The performance of the two estimators proposed by Callaway and Sant'Anna (2021) and the one 

proposed by Sun and Abraham (2021) is qualitatively similar.  In addition to the overall MSE being 

very high compared to the other models, they have an estimated bias greater than 2, that is, greater than 

2/3 of the true value of the parameter. 

As the sample size increases, the high bias and high MSE do not seem to disappear (Tables 2 

and 3). In this sense, the estimators appear to become inconsistent under such a treatment assignment 

mechanism.  

Table 1: Mechanism A / 𝑵𝑻 = 𝟏𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,2329 3,7141 0,2436 3,4780 3,4839 

C&S-NV 4,8688 5,3046 4,3242 5,0764 5,0764 

C&S-NY 4,9575 5,3889 4,7245 5,1707 5,1669 

Borusyak 3,5329 4,2427 0,8031 3,8766 3,8703 

Sun & A 4,8398 5,3001 4,2756 5,0643 5,0637 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 2: Mechanism A / 𝑵𝑻 = 𝟓𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,3752 3,5778 0,2310 3,4778 3,4787 

C&S-NV 4,9809 5,1656 4,2921 5,0712 5,0702 

C&S-NY 5,0745 5,2651 4,6991 5,1672 5,1664 

Borusyak 3,7304 4,0310 0,7811 3,8802 3,8822 

Sun & A  4,9702 5,1556 5,0587 5,0587 5,0567 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 3: Mechanism A / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,4125 3,5519 0,2313 3,4795 3,4770 

C&S-NV 5,0088 5,1410 4,2953 5,0722 5,0717 

C&S-NY 5,1046 5,2359 4,7036 5,1685 5,1678 
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Borusyak 3,7712 3,9989 0,7854 3,8844 3,8836 

Sun & A 4,9946 5,1259 4,2409 5,0590 5,0581 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Tables 4 to 9 show the results of mechanisms B and C, which consider 4 and 8 lags between the 

negative shock and the entry to the treatment group. Unlike mechanism A, the performance of the 

models proposed by Callaway and Sant'Anna (2021) and Sun and Abraham (2021) is superior to the 

performance of the estimator of Borusyak et al. (2021) and TWFE, considering the MSE, the estimated 

confidence intervals and the two measures of centrality (mean and median). 

Just as in mechanism A, there does not seem to be a convergence to the true value of the 

treatment effect as the number of individuals in the panel grows, since the MSE decreases at a small 

rate. Thus, all estimators appear to be inconsistent under the scenario we analyze. 

Comparing mechanisms, there is very little qualitative change in the results whether the 

assignment to treatment occurs 4 or 8 periods following the shock (mechanism B and C, respectively). 

On the other hand, the magnitude of the distortions is considerably higher in the case where the 

assignment to the treatment occurs instantaneously with the shock (mechanism A). 

 

Table 4: Mechanism B / 𝑵𝑻 = 𝟏𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,0589 3,5122 0,0970 3,2896 3,2888 

C&S-NV 2,5625 3,5372 0,0612 3,0497 3,0461 

C&S-NY 2,6041 3,5964 0,0675 3,0871 3,0820 

Borusyak 3,1192 3,6322 0,1512 3,3675 3,3655 

Sun & A 2,5250 3,5450 0,0716 3,0512 3,0615 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 5: Mechanism B / 𝑵𝑻 = 𝟓𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,1919 3,3863 0,0884 3,2932 3,2948 

C&S-NV 2,8328 3,2202 0,0110 3,0353 3,0393 

C&S-NY 2,8711 3,2649 0,0152 3,0726 3,0756 



19 

 

Borusyak 3,2644 3,4787 0,1416 3,3722 3,3731 

Sun & A 2,8321 3,2202 0,0110 3,0352 3,0393 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 6: Mechanism B / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,2250 3,3626 0,0858 3,2909 3,2910 

C&S-NV 2,9003 3,1815 0,0069 3,0404 3,0412 

C&S-NY 2,9405 3,2213 0,0113 3,0772 3,0775 

Borusyak 3,2946 3,4448 0,1383 3,3699 3,3698 

Sun & A 2,9003 3,1815 0,0069 3,0404 3,0412 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 7: Mechanism C / 𝑵𝑻 = 𝟏𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 2,9558 3,4481 0,0624 3,2148 3,2175 

C&S-NV 2,5336 3,5322 0,0679 3,0522 3,0564 

C&S-NY 2,4891 3,5022 0,0672 3,0151 3,0214 

Borusyak 2,9661 3,4785 0,0708 3,2320 3,2346 

Sun & A 2,4598 3,5759 0,0801 3,0533 3,0418 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 8: Mechanism C / 𝑵𝑻 = 𝟓𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,1152 3,3373 0,0511 3,2195 3,2200 

C&S-NV 2,8351 3,2909 0,0179 3,0632 3,0615 

C&S-NY 2,8008 3,2526 0,0194 3,0262 3,0226 

Borusyak 3,1300 3,3552 0,0595 3,2375 3,2379 
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Sun & A 2,8351 3,2909 0,0179 3,0632 3,0618 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 9: Mechanism C / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,1377 3,2967 0,0488 3,2173 3,2177 

C&S-NV 2,8969 3,2162 0,0102 3,0603 3,0606 

C&S-NY 2,8588 3,1803 0,0073 3,0230 3,0243 

Borusyak 3,1542 3,3159 0,0572 3,2356 3,2352 

Sun & A 2,8969 3,2162 0,0102 3,0603 3,0606 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Finally, Tables 10, 11 and 12 show the results of mechanism D, which assigns to treatment those 

units that suffer a high negative shock relative to their own average, instead of in absolute terms. The 

results are quite similar to mechanism A. The TWFE model and the one proposed by Borusyak et al. 

(2021) outperform those of Callaway and Sant'Anna (2021) and Sun and Abraham (2021). However, in 

all of them, for all panel dimensions, the true value of the treatment effect is not within the estimated 

confidence interval. Moreover, as in the previous cases, the estimators do not seem to be consistent. 

 

Table 10: Mechanism D / 𝑵𝑻 = 𝟏𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,0862 3,6468 0,1562 3,3689 3,3696 

C&S-NV 5,0110 5,5609 5,2384 5,2842 5,2828 

C&S-NY 5,0675 5,6233 5,4636 5,3330 5,3293 

Borusyak 3,2838 4,2101 0,5708 3,7173 3,7162 

Sun & A 4,9046 5,6297 5,1890 5,2698 5,2710 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 
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Table 11: Mechanism D / 𝑵𝑻 = 𝟓𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,2567 3,4905 0,1396 3,3688 3,3665 

C&S-NV 5,1764 5,4031 5,2273 5,2855 5,2850 

C&S-NY 5,2255 5,4516 5,4620 5,3363 5,3361 

Borusyak 3,5400 3,9482 0,5467 3,7317 3,7336 

Sun & A 5,1723 5,3982 5,2048 5,2806 5,2805 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 12: Mechanism D / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 3,2804 3,4683 0,1413 3,3731 3,3724 

C&S-NV 5,2050 5,3705 5,2368 5,2879 5,2873 

C&S-NY 5,2541 5,4194 5,4702 5,3384 5,3384 

Borusyak 3,5904 3,8896 0,5524 3,7391 3,7404 

Sun & A 5,1997 5,3646 5,2140 5,2830 5,2828 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Overall, the results show that the performance of Difference-in-Differences models depends 

largely on the selection mechanism that assigns units to treatment. Mechanisms that depend on the 

shocks suffered by the units can cause a significant bias in the estimates, as well as inconsistency. If 

there is a large time lag between the shock and the start of treatment, these problems may decrease, but 

even with large time windows the problem tends to persist. In addition, the conclusions do not depend 

on whether we consider shocks to be large in absolute or relative terms.  

Moreover, it is important to note, for the specific case of TWFE, that part of its good 

performance may be due to the fact that the treatment effect was assumed to be homogeneous. In this 

way, Gauss-Markov conclusions can be applied, since the TWFE is estimated by OLS. In practical 

applications, where the assumption of homogeneity in the treatment effect may be too strong, one may 

expect, based on results from this literature, that its performance will be impaired. 

 

4.2 Spillover effect 
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This subsection reports the results under spillover effects I and II. As shown in Tables 13, 14, 

and 15, the presence of a non-additive spillover pattern (spillover I) systematically underestimates the 

true value of the parameter. Only the estimator proposed by Sun and Abraham (2021) simulated with a 

shorter panel dimension (NT = 1000) delivers the true treatment effect (𝜏 = 3) within the estimated 

confidence interval at the 95% level.  

The estimator of Callaway and Sant'Anna (2021) that uses the not yet treated units as a control 

group, but mainly the estimator of Sun and Abraham (2021), are the ones impacted to a lesser extent by 

the presence of the non-additive spillover. Still, on average, the estimates underestimated the true value 

of the treatment effect by more than 10%. The worst performer in this regard is the estimator of Borusyak 

et al. (2021), which on average underestimates the true value of the parameter by more than 40%, even 

in the largest panels. 

Moreover, for all models, the slow rate of decrease of the MSE as the panel dimension grows 

highlights that, in the presence of such a pattern of spillover effect I, the estimators studied are not only 

biased, but also seem to be inconsistent. 

 

Table 13: Spillover I (non-additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 1,3179 2,3146 1,2687 1,9016 1,9350 

C&S-NV 0,9829 2,3472 1,5646 1,7965 1,8329 

C&S-NY 1,2815 2,6786 0,9126 2,1096 2,1546 

Borusyak 1,0156 2,1730 1,7527 1,7081 1,7495 

Sun & A 1,7222 3,3475 0,3108 2,6408 2,6810 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 14: Spillover I (non-additive) / 𝑵𝑻 = 𝟓𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 1,7449 2,1602 1,0598 1,9760 1,9856 

C&S-NV 1,4909 2,0962 1,3823 1,8349 1,8494 

C&S-NY 1,7776 2,4033 0,7636 2,1410 2,1546 

Borusyak 1,5003 2,0083 1,4920 1,7856 1,7993 

Sun & A 2,2511 2,9330 0,1684 2,6295 2,6459 
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Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 15: Spillover I (non-additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 1,8297 2,1243 1,0399 1,9831 1,9878 

C&S-NV 1,6178 2,0352 1,3685 1,8351 1,8431 

C&S-NY 1,9175 2,3343 0,7503 2,1407 2,1460 

Borusyak 1,5983 1,9689 1,4582 1,7961 1,8020 

Sun & A 2,3705 2,8359 0,1584 2,6214 2,6260 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Finally, Tables 16, 17 and 18 present the results under spillover effect II, which considers the 

possibility of an additive impact in no treated groups as more units in the cluster receives the treatment. 

Again, all estimators underestimate the true value of the treatment effect, albeit by a smaller magnitude 

than under spillover I. On average, the underestimation is just under 10%. Furthermore, although in 

panels of dimension 𝑁𝑇 = 1000  the true value of 𝜏 lies within the confidence interval of all estimators, 

these intervals shrink significantly to the point of no longer including the true value of 3 as the panel 

dimension increases. 

Regarding centrality measures and MSE, the estimator TWFE (to a greater extent) and the one 

proposed by Borusyak et al. (2021) are less affected by the additive spillover effect, opposing the pattern 

verified under spillover I. 

Similar to all previous simulations, the slow rate of decay of the MSE suggests inconsistency of 

the estimator also under spillover effect II. 

 

Table 16: Spillover II (additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 2,5637 3,0262 0,0584 2,7915 2,7964 

C&S-NV 2,2969 3,1990 0,1192 2,7468 2,7623 

C&S-NY 2,2952 3,2157 0,1146 2,7568 2,7696 

Borusyak 2,4963 3,0197 0,0758 2,7622 2,7635 

Sun & A 2,2611 3,2035 0,1298 2,7446 2,7444 
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Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 17: Spillover II (additive) / 𝑵𝑻 = 𝟓𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 2,7056 2,9084 0,0412 2,8037 2,8004 

C&S-NV 2,5569 2,9486 0,0693 2,7572 2,7560 

C&S-NY 2,5563 2,9689 0,0644 2,7684 2,7666 

Borusyak 2,6579 2,8989 0,0529 2,7777 2,7783 

Sun & A 2,5543 2,9520 0,0701 2,7559 2,7460 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

Table 18: Spillover II (additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎   

Estimator LB (95%) UB (95%) MSE Mean Median 

TWFE 2,7231 2,8739 0,0403 2,8027 2,8038 

C&S-NV 2,6110 2,8907 0,0657 2,7535 2,7545 

C&S-NY 2,6193 2,9026 0,0607 2,7641 2,7644 

Borusyak 2,6889 2,8739 0,0523 2,7757 2,7763 

Sun & A 2,6107 2,8892 0,0659 2,7530 2,7533 

Note: the true treatment value is 3. "LB" and "UP" refer to the lower and upper bounds of a confidence interval 

at the 95% level. "C&S-NV" and "C&S-NY" refer to the estimator proposed by Callaway and Sant'Anna (2021) 

using as control group the never treated and the not yet treated units, respectively. 

 

In general, the presence of the spillover effects we study systematically compromises the 

performance of Difference-in-Differences estimators that become biased and inconsistent.  Given that 

spillovers are present in several empirical analysis, our results suggest cautious while interpreting the 

results from real applications. In addition, despite the methodological difficulties involved, the 

importance of developing estimators that are robust to the circumstances consider becomes evident and 

should prove to be an important research venue. 
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5. CONCLUSION 

 

The goal of this paper was to conduct Monte Carlo experiments to evaluate the performance of 

commonly used Difference-in-Differences estimators under scenarios in which the treatment selection 

mechanism is affected by shocks suffered by the units, and under situations where treatment effects 

spillover to non-treated units that are in the control group. Specifically, we compare the estimators 

proposed by Callaway and Sant'Anna (2021), Borusyak et al. (2021) and Sun and Abraham (2021), in 

addition to the TWFE estimator. 

Importantly, the scenarios we consider, although commonly observed in real applications, imply 

in violation of some assumptions behind the derivation of these estimators. In particular, the treatment 

selection mechanism influenced by shocks violates the parallel trends assumption, while the spillover 

effect on units belonging to the control group violates the SUTVA hypothesis. 

Our results indicate that the presence both situations can greatly compromise the performance 

of the estimators responsible for measuring the effect of the treatment on treated units: they become 

biased and may not even be consistent, since the bias is not eliminated when using panels with 

dimensions enlarged by the addition of extra units.  

In practical applications, our results suggest cautious with the estimates obtained by this class 

of estimators when there is a suspicion that the context examined is similar to those we study. In addition, 

especially in the case of spillover effects, we emphasize the importance of developing estimators capable 

of dealing adequately with this type of structure. In this sense, the paper illuminates a possible direction 

for further methodological research on the Difference-in-Differences literature.  

Finally, we highlight the importance of conducting similar research, both analytical and 

computational, but exploring other contexts, such as the presence of anticipation to the treatment effect, 

new treatment assignment mechanisms, new functional forms for potential outcomes, and the interaction 

of these factors with the heterogeneity of the treatment effect among the treated units and over time. 
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APPENDIX 

 

Figure 1: Mechanism A / 𝑵𝑻 = 𝟏𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡 < −1.64. There are 

𝑁 = 50 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 1000 is the total number of 

observations. 

 

Figure 2: Mechanism A / 𝑵𝑻 = 𝟓𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡 < −1.64. There are 

𝑁 = 250 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 5000 is the total number of 

observations. 

 

 

Figure 3: Mechanism A / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡 < −1.64. There are 

𝑁 = 500 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 10000 is the total number of 

observations. 

 

Figure 4: Mechanism B / 𝑵𝑻 = 𝟏𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡−4 < −1.64. There 

are 𝑁 = 50 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 1000 is the total number of 

observations. 

 

 

Figure 5: Mechanism B / 𝑵𝑻 = 𝟓𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡−4 < −1.64. There 

are 𝑁 = 250 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 5000 is the total number of 

observations. 

Figure 6: Mechanism B / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡−4 < −1.64. There 

are 𝑁 = 500 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 10000 is the total number of 

observations. 

 

 

 

Figure 7: Mechanism C / 𝑵𝑻 = 𝟏𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡−8 < −1.64. There 

are 𝑁 = 50 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 1000 is the total number of 

observations. 

Figure 8: Mechanism C / 𝑵𝑻 = 𝟓𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡−8 < −1.64. There 

are 𝑁 = 250 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 5000 is the total number of 

observations. 

 

 

 

Figure 9: Mechanism C / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if 𝜖𝑖,𝑡−8 < −1.64. There 

are 𝑁 = 500 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 10000 is the total number of 

observations. 

 

Figure 10: Mechanism D / 𝑵𝑻 = 𝟏𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if  
𝜖𝑖,𝑡

𝛼𝑖
< −2%. There are 

𝑁 = 50 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 1000 is the total number of 

observations. 

 

 

 

Figure 11: Mechanism D / 𝑵𝑻 = 𝟓𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if  
𝜖𝑖,𝑡

𝛼𝑖
< −2%. There are 

𝑁 = 250 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 5000 is the total number of 

observations. 

 

Figure 12: Mechanism D / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. Unit 𝑖 is assigned to treatment at time 𝑡 if  
𝜖𝑖,𝑡

𝛼𝑖
< −2%. There are 

𝑁 = 500 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 10000 is the total number of 

observations. 

 

 

 

Figure 13: Spillover II (non-additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. The spillover effect is positive for unit 𝑖 at time 𝑡 if max
𝑗≠𝑖

𝐷𝑗,𝑡 = 1. 

The fraction of the treatment effect that spills over to the control group is 𝜌 = 10%. There are 𝑁 = 50 units and 

𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 1000 is the total number of observations. 

 

Figure 14: Spillover II (non-additive) / 𝑵𝑻 = 𝟓𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. The spillover effect is positive for unit 𝑖 at time 𝑡 if max
𝑗≠𝑖

𝐷𝑗,𝑡 = 1. 

The fraction of the treatment effect that spills over to the control group is 𝜌 = 10%. There are 𝑁 = 250 units and 

𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 5000 is the total number of observations. 

 

Figure 15: Spillover II (non-additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. The spillover effect is positive for unit 𝑖 at time 𝑡 if max
𝑗≠𝑖

𝐷𝑗,𝑡 = 1. 

The fraction of the treatment effect that spills over to the control group is 𝜌 = 10%. There are 𝑁 = 500 units and 

𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 10000 is the total number of observations. 

 

Figure 16: Spillover II (additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. The spillover effect for unit 𝑖 at time 𝑡 is given by 
2

100
〈𝐷−𝑖,𝑡 , 𝐷−𝑖,𝑡〉. 

There are 𝑁 = 50 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 1000 is the total number of 

observations. 

 

 

Figure 17: Spillover II (additive) / 𝑵𝑻 = 𝟓𝟎𝟎𝟎 
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Note: The true value of the treatment effect is 3. The spillover effect for unit 𝑖 at time 𝑡 is given by 
2

100
〈𝐷−𝑖,𝑡 , 𝐷−𝑖,𝑡〉. 

There are 𝑁 = 250 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 5000 is the total number of 

observations. 

Figure 18: Spillover II (additive) / 𝑵𝑻 = 𝟏𝟎𝟎𝟎𝟎 

 

Note: The true value of the treatment effect is 3. The spillover effect for unit 𝑖 at time 𝑡 is given by 
2

100
〈𝐷−𝑖,𝑡 , 𝐷−𝑖,𝑡〉. 

There are 𝑁 = 500 units and 𝑇 = 20 time periods in the simulated datasets, so 𝑁𝑇 = 10000 is the total number 

of observations. 

 

 

 


